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Abstract

Consider an acyclic¢ undirected network G = (V,E) with node

set V and arc set E whose arcs are subject to random failure.

\\\Let 8 be a node in V and T a set of nodes in V such that s £ T.
~AThis paper presents a relatively complete and comprehensive de-
scription of a general class of Monte Carlo sampling plans for
estimating g = g(s,T), the probability that s is connected to all
nodes in T. The paper also provides procedures for implementing

these plans. Each plan uses known lower and upper bounds [B,A]
on g to produce an estimator of g that has a smaller variance ffi
(A-g)(g-B)/K than one obtains for crude Monte Carlo sampling

(B=0, A=1) on K independent replications. The paper describes

worst case bounds on sample sizes K, in terms of B and A, for

meeting absolute and relative error criteria. It also gives the
—s
worst case bound on the amount of variance reduction that can be : %
expected when compared with crude Monte Carlo sampling. 5
Two plans are studied in detail for the case T = {;;?\SAn -fii
example illustrates the variance reductions achievable with these :fiﬁ

plans. The paper next shows how to assess the credibility that a
specified error criterion for g is met as the Monte Carlo experi-
ment progresses and then shows how confidence intervals can be ;pg
computed for g. Lastly, the paper summarizes the steps needed to -

implement the proposed technique.
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Introduction -
Consider an acyclic undirected network G = (V,E) with node ;j
set V and arc set E. Suppose that nodes are perfect but that :%i
arcs are subject to random failure. Let s be a node in V and T a LEE
set of nodes in V such that s ¢ T. The purpose o this paper  ]
is to present a relatively complete and comprehensive description .
of a general class of Monte Carlo sampling plans for estimating -
g(s,T), the probability that s is connected to all nodes in T. :i
The paper also provides procedures for implementing these plans. ;
In the single node case with T = {t}, we speak of s-t connected- F;J
ness; when T = V - {s], we speak of network connectedness. r {g
Since it is well known that direct computation of g(s,T) ;3
generally requires exponential time, a variety of alternative ;i;Q
methods have been proposed to approximate g(s,T). Notable among &i?
these proposals are those based on bounds and on Monte Carlo meth- FEﬁ
ods. As an example of bounds, Esary and Proschan (1963, Thm. ;;4
-
4.1) describe a lower bound that derives from a network Gi = f.jj
(V,E) in which all minimal cutsets are disjoint and describe an :
upper bound that derives from a network Gp = (V,E) in which all
minimal paths are disjoint. -??;
Any attempt to use bounds raises two important questions. ﬁ
First, are the bounds sufficiently tight to forgo the need for a »“%
more precise computation of g{(s,T) and second, how much time does ji
the computation of the bounds require? Note that if the computa- vi
tion of bounds for a proposed method takes exponential time in N
either || or |E| in general, then the question of tightness is :;i;
LS
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merely an academic one. This is so for the Esary and Proschan -l
bounds. T

Monte Carlo sampling is the other major approach to approxi-

mating g(s,T). Whereas all techniques of evaluation accumulate
numerical error as the size of the network grows, the Monte Carlo
method additionally introduces sampling error. To appreciate the
significance of this error, we note that, {f each arc is either -
on or off, there are 2|El possible states of the network. There- .
fore, K replications of a Monte Carlo experiment can at best
account for only a small number of these states when [f is even -t
moderate in size, and this limitation introduces sampling error. 5

Since sampling error for independent trials or replications ffff

decreases as 1/K'/2, it is clear that more replications means a —
smaller error. Therefore, the cost of a Monte Carlo depends on K Tji?

o]
which in turn depends on the level of sampling error one is pre- 'i?&
pared to accept and on the cost per replication. Two concepts of -;;;

sampling error arise in practice, one absolute and the other rel

ative. Let EK denote an unbiased estimate of g = g(s,T) based

on K replications. Then to achieve an absolute error no larger ff:]

than € > 0 with confidence level greater than 1-§, one needs to

collect :5}i
K = min[k: pr( Ek -8 |>e€) s sl (1)
Q . replications., For a relative error no greater than e on g one
needs
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K = min[k: pr( > €e) s 61 (2)

replications. For a relative error no greater than € on the fail-

]
]
F ure probability ' - g one needs

K = min[k: pr( > €) § 6] (3)

8 2?if
si l1-g
k: e

replications.

A major consideration in using the Monte Carlo method is to
i achieve one or more of these error objectives while keeping K and — ]
b the cost per replication within reason. Variance reducing techni-

ques described in Van Slyke and Frank (1972), Kumamoto, Tanaka

and Inoue (1977), Easton and Wong (1980), Kumamoto, Tanaka, Inoue

and Henley (1980), Karp and Luby (1983) and Fishman (1983a, j:“f
1983b) are all intended to make K smaller than it otherwise would ;;{i
be if crude Monte Carlo sampling were used. Among these only the o
Karp and Luby proposal addresses the issue of how cost grows as a ??j{
function of 6§ and ¢. 1In particular, their method achieves (3) in ii?g

0( | m) time where m denotes the number of failure sets of the
network, Since this approach requires the determination and stor-
age of all m failure sets prior to performing the sampling experi-

ment and since m can be large in practice, the approach has a

. 0
Ao ah ddo’

clear limitation. A shortcoming of all other approaches is that

none provides an a priori estimate of how large K needs to be in

order to achieve a specified error bound.
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i The present paper introduces the general concept of a Monte ;hi
Carlo sampling plan that relies explicitly on the use of a priori :
bounds 0 < B s g(s,T) S A < t to estimate g(s,T) unbiasedly.

. Section 1 describes the plan and shows that every such sampling

plan leads to a smaller variance var EK and to smaller coeffi-

cients of variation Y(EK; A,B) = (var EK)1/2/3 and Y(I-EK; A,B) =

: (var EK)1/2/(1 - g) than obtain for crude Monte Carlo sampling. N l

P

Moreover, worst case bounds can be computed for all these quanti-
E ties in terms of A and B. These worst case bounds enable one to
compute upper bounds on K for ecriteria (1), (2) and (3) thus pro-

viding valuable information prior to beginning the sampling exper-

i iment. The paper next derives the worst case lower bound on the

- variance reduction achievable when compared with crude Monte ‘Tf

7 Carlo sampling. {»?

i Each sampling plan has three major time irelated cost consid- ;;:
erations: 1) the time to compute A and B prior to sampling, 2) fj"f

the time to sample the status of each arc in E on each replica-
tion and 3) the time to determine connectedness on each replica-
tion. With regard to this last cost, we assume that a depth-
first search algorithm as in Aho, Hopecroft and Ullman (1974, p.

- 176) is used which takes O(max( | , |§ )) time.

, Section 2 shows that these general sampling plans include ]
i the Van Slyke and Frank (1972) bounds as a special case. When g;

R
f failures occur independently with fidentical failure probabili- 9Li
- ties, the computation of A and B takes O( |§ ) time and sampling 0
. 1
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per replication also takes O( |§ ) time. Section 3 shows how the
method of Kumamoto, Tanaka and Inoue (1977) also fits into this
class of sampling plans. Since their suggested implementation
can require exponential time to compute A and B and more than
0C | ) time per replication for sampling, we describe an alterna-
tive approach that takes 0(|ﬂ ) time for computing A and B and
for sampling per replication. For fixed § and ¢ the results for
bounds and timings lead to (1) in O(max( | , [§ )(A-B)2) time, to
(2) in o(max( M , [f )(A-B)2/AB) time and to (3) in
o(max( | , | )(A-B)2/(1-A)(1-B)) time.

Section 4 illustrates how the proposed sampling plan works
for estimating s-t connectedness for a 30 arc network for the Van
Slyke and Frank (VSF) bounds and for the Kumamoto, Tanaka and
Inoue (KTI) bounds. Section 5 then shows how to assess the credi-
bility that a specified error criterion for 1-g is met as K in-
creases. Section 6 next shows how one can derive confidence in-
tervals for g by using exact sampling theory, Chebyschev-1like
bounds and a normal approximation. Section 7 summarizes all the
steps needed to implement a Monte Carlo sampling plan using the
KTI bounds.

We begin with several useful definitions. For each icE let

X{ =1 if arc { operates
= 0 otherwise
x = (xgy, ieE) = a state of the network

XJ = set of all states x such that
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I x; s i =0,%,..., 9 -
icE R

pPi = probability that arc i operates

and
P(x) = probability that state x occurs.

Observe that if failures occur independently then

P(x) = R 1 - Py * xi(2pi-1)] xeX = xlﬂ . () o
icE

i

Lastly, we define the structure function
¢(x) = ¢(x; s,T) = 1 if node s is connected to all nodes J
in T -4
) '1
= 0 otherwise o]
and the s-T connectedness probability iﬁ:
L
g = g(s,T) = § ¢(x) P(x). -
xeX .
)
Note that if T = {t] then the existence of an operating path from :ff
s to t implies connectedness. If T = V - {s]|, then the existence T“j
of a spanning tree implies connectedness. )
.J
=
| 1
f 1. Sfampling Plans ]
o
Let T denote the set of all sampling plans {y(x),Q(x); xeX} N
o where each {y(x)} is a binary function of the form :
- ..4
: v(x) = (A~B)¢(x) + B O <BsgsA<CT (5) -]
- o
i and {Q(x)} is a sampling distribution such that ° ]
b I wi(x)a(x) = g, 1
. xeX -
- -
- T
' 4
] 1
»
K
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or equivalently,
N I ¢(x)Q(x) = (g-B)/(A-B). S
yﬁz xeX T
P N
ii: If one draws K independent samples x(1),...,x(K) from {Q(x)] then -
o . p K (3) ]
v By = g L w(x ) (6) =
J=1 o
- d
is an unbiased estimator of g with L
T
- R
var g, = (A-g)(g-B)/K = (A-B)2/uK (7a) S
and coefficients of variation
- 1/2
_ (var 8y ) 1/2
Y(SK; A,B) = g < (A-B)/2(KAB) (7b)
and
-
- (var SK)1/2 1/2 :
Y(1-gK; A,B) = e s (A-B)/2[K(1-A)(1-B)] . (7e¢) .

These results which follow from maximization of (A-g)(g-=B),
(A-g)(g-B)/g2 and (A-g)(g-B)/(1-g)2, respectively, have several

notable features. Observe that they apply for dependent as well

as independent arc failures. Also, observe that min( |A-g , [g-H ) .

moreso than A-B determines the magnitude of var EK’ revealing : ;
the greater benefit of a single tight bound as compared to a

small interval A-B. For an absolute error € as in (1) one has .

. ._ﬂ

K s [B(§)(A-B)/2e]2 (8) =

Y

where 9

o]

bue

Y

R
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e 8(s) = min{B: prl —75 > 81 s s}.
).
. (var gK)

For a relative error e in (2) and (3) one has, respectively,

v - e
v, [

K s [B(5)(A-B)/2¢]2/AB (9)

and

” K s [8(8)(A=B)/2e12/(1-A)(1-B). (10)

' To compute the bounds in (8), (9), and (10) one needs to

know {8(8), 0 < & < 1}. Although S = K(g,~B)/(A-B) has the

b- binomial distribution with parameters K and p = (g-B)/(A-B), this
is of limited value at this point since p is unknown. From
Chebyshev's inequality one has

s B(s) = 175172, (11)

'{: which leads to a conservatively larger upper bound than is gener-

Gf ally required.

i Observe that as K + = the distribution of (S-Ku)/[Ku(1-u)1'/2

converges to the standard normal distribution. Since K needs to be

large when ¢ is small, one may in such a case use

. 1

B2
B(§) = [B: [ €72 7247 = (1-8)721 (12)

(21:)1/2 -®

in (8), (9) and (10), but noting its approximating nature. These

bounds on K provide a convenient prior assessment of worst case
?; effort and make clear the desirability of striving for short in-
?' tervals [B,A].
. Procedure BOUNDS describes the steps needed to perform K
i: independent replications on a Monte Carlo experiment using a sam-
.

.
o & .
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pling plan in I'. Observe that EK is the maximum likelihood -
estimator of g and V(gK), apart from the division by K - 1

instead of K, is the maximum likelihood estimator of var EK‘

The use of K - 1 in place of K makes V(EK) unbiased in small .

samples.

Procedure BOUNDS

Purpose: To estimate g(s,T).
Input: Network G = (V,E,s,T), bounds A and B, sampling

distribution {Q(x), xeX} and sample size K.

Qutput: Point estimate EK of g(s,T) and point estimate v(éK) of
var gy.
Method:

I. Initialization

Start with 8z0. -
I1. On each replication 1,...,K do:

a. Determine state by sampling x from {Q(x)}.

b. Check for s-T connectedness; if connected add 1 to S.

III. Computation of final estimates

a. EK = (A-B) S/K + B.
b, V(E.) = (A-B)Z(1-S/K)(S/K)/ (K1),

End of procedure,

PEP PO SO O I PN A IR S A L ST, N SR I e et A A as s ataa
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.Y Crude Monte Carlo Sampling

The significance of a sampling plan {y(x),Q(x)]} can
stood best by first considering the simplest form of Mont
sampling. Here A = 1, B = 0 and Q(x) = P(x) so that

(K)

w(x(‘)),...,w(x ) are the outcomes of K independent Ber

trials with parameter g and

var EK = g(1-g)/K.

If arc failures are independent then P(x) has the form (U4
that determining the status of each arc is itself an inde
Bernoulli trial.

Now observe that g(1-g)/(A-g)(g-B) gives tne number
cations needed to achieve the same variance with crude Mol
Carlo sampling as one obtains using the bounds B and A.
fore the worst relative performance, with regard to varia
a sampling plan based on B and A occurs when this quantit
minimal; namely at

g' = 1/{1+[(1-a)(1-B)/aB]/2}
so that g'(1-g')/ (A-g')(g'-B) provides an a priori lower
the potential variance reduction,.

For the remainder of the paper we assume arc failure
independent. Procedure B describes how one samples from

P(x)}, using W = E as input in O( |[§ ) time.




PRI AL SIS I TN D RCA RS IR MMt s e i e [RIC A e A Sate St A Jar Sase i s Sse SNSE R e e

Procedure B -

Purpose: To sample the status of each arc ieW.

Input: W and {pi, ieW}. :}E
OQutput: x = {x3, ieWw}. !
Method:

I. For each jeW do: sample Uj from U(0,1) and set
g = Lpg vyl o

End of procedure.

2. Bounds Based on Minimal Cardinality Paths and Cutsets

Crude Monte Carlo sampling makes no use of prior information
regarding the network under study, a weakness that can be re- -

moved, at least conceptually, with minimal effort. For the net-

work G, there exists a set of ares M = M(s,T) such that at least

MI arcs must operate in order for s-T connectedness to be possi- ﬁi;
ble. Also, there exists a set of arcs C = C(s,T) such that at f&ﬂ
least [| arcs must fail in order for s-T disconnectedness to be e
" possible. For example, for T = {t} M denotes the s-=t path of -
?; minimal cardinality and C denotes the s-t cutset of minimal cardi- E:Q
- ey
“2 nality. For T = V - {s}, M denotes the s-T spanning tree of mini- ffk
%' mal cardinality and C denotes the network cutset of minimal cardi- -
f’ nality.
f{ The significance of M and C is that for every integer L s M|
S ¢(x) = 0 for x e Xp-q T
E; and for every integer H 5 [ E&E

.--'.r-~-- .n__-.r-.--.z--‘.e-.-.L.L *.-:.r.- AT N RO ONN -

.“---(.'g_.-‘;‘...l




’: B =1 -3 P(x) (13b)

xeX H_H
f‘ and samples x using the distribution
- Q(x) = F(X)/(A"B) X € X IEI _H—XL_1. (1“)

To benefit from these bounds, one first needs to know M|
and [k| . The determination of M takes O0( | ) time and of C takes
0( v /3 |J§ ) time (Papadimitriou and Steiglitz, 1982, Th. 9.3, p.
213). Presumably L and H are then chosen so that the calculation

of A and B are computationally feasible. For example, if pj = p

ieE then with ease one can choose L = M and H = k| and compute
A =1 - F-1(CH,p)
and

B = 1 - F ( ’ '
CENLRE

where
1 n, J n-j
F.(n,8) = ] ([)e (1-8) 0 <8 <1 0sismn,
i J
=0
e e o N T e v S S e

P, a

-

3 =13~

Ej e{x) = 1 for x e X E l- X IE| -H -

3; To incorporate this information into the sampling procedure, one :ﬁj

i sets

; A =1 -7 P(x) (13a) o
xsXL_1

-
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in O(IH ) time. By contrast, for unequal p; one needs to perform

¢ oH A
o( § «( { )) steps to compute A and O( ] ( %')) steps to com-
i=0 i=0

pute B, tasks that may be burdensome if M and [| are large and
one takes L = M and H = [| . When this is so, choosing smaller
L and H reduces the burden, but also widens the interval A-B.

In contrast to the independent Bernoulli sampling for each
arc's status in Procedure B, the present procedure calls for sam-
pling x on each replication subject to the constraint

L s ] x, H - H. (15)
ieE

For the case of p;j = p i¢E, Procedure BIN can effect this sam-
pling, withn = |§, 6 =p, a = H , b = |J and W = E as input,
in O(IH ) time. 1In particular, step IIb determines the number of
operating arcs in 0(1) time if one uses the cutpoint method of
sampling from a discrete distribution as described in Fishman and
Moore (1984). This method requires the preparation of two tables
prior to doing any sampling. These tables, whose computation
take O( |§ ) time, are constructed in such a way that subsequent
sampling on each replication takes constant time, independent of
£l . |[E] and M . As an alternative one may sample k in step IID
using the alias method of Walker (1977) as described in Kronmal

and Peterson (1979) in the same time.

Once k is known, there are (IE ) ways of assigning the k oper-

o\. ‘-
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ating arcs among the H arcs. Step II1Ib selects the combination
m that is to be used on this replication in 0(1) time and step 1V

uses the k-canonical representation of the integer m (Kruskal

1963 and Katona 1966) to identify the arcs that operate in 0( |g )
time, Additional details about this sampling method appear in
Fishman (1983b).

Van Slyke and Frank (1972) first proposed using the bounds
in (13) to reduce variance in Monte Carlo experiments in the case
of independent arc failures with Py = P ieE. Hereafter we call
these the VSF bounds. An extension of this approach is also

possible. One takes L > M , H > [| and sets

A =1 - 3 P(x) - } ¢(x) P(x) (16a)
xeX Ml -1 XCXL-X MI
and
B =1~ 3 P(x) - ] $(x)P(x). (16b)
xeX IE-CI xeX IE_Cl - X |E1 -H

The idea here is that one selects L and H and uses the resulting
A,B and {Q(x)}, as constrained by (15), to effect a greater
variance reduction than L = M and H = [| allow. This nibbling
away at the reliability computation has an increasingly beneficial

effect as min P,* 1 since the term for which 155 x, = [E-¢; becomes
important in (16a). It has a similar effect when max Py * 0 since

the term with ] x, = M becomes important in (16;). The feasi-

bility of usinéeshis method depends on the ability to compute
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Procedure BIN ;;A
Purpose: To sample the status of each arc i in W. S;L
Input: n,8, {Fj(n,8); i = 0,1,...,n}, a,b,W = {wq,...,wp}. ;ﬁ
Qutput: x = {xg, ieWw}. S
Method: .

I. Initialization 7]
a. For each ieW, set xy = 0. '*;

II. Determine the number of arcs that operate
a. Sample U from U(0,1). )
b. k = min{j: Fj(n,8) - Fp-1(n,8) > U[Fp~a(n,8) - fii
Fp-1(n,8)); b s j s al. :

III. Determine the "number"” of the combination
a. Sample U from U(0,1). ';;

boom = (U]

IV. Determine status of arcs e

a. w = k and A = m.

b. Until o = 0 do: y = max[z: (z) S Al; s

Po= wysrs xg =15 8 =8~ (N andw =w - 0.

c, Until w = 0 do: {1 = ww; X, = 1; and w = w - 1.

End of procedure.
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¢(x) for each x ¢ X, =X hland X e X E_C|«X|d aH Since the compu-~

L

tational feasibility of A and B in (1'6) are in question even for
the special case of equal pi, the general applicability

of this approach is even more limited.

3. Bounds Based on a Control

The bounds [B,A] in Section 2 are global in nature and ex-
ploit a relatively small amount of information about the network
under study. Moreover, their application is severely limited by
the fact that only in the case of equal probabilities are the
bounds B and A easily calculated and the arc states easily sam-
pled. The present section considers more informative bounds that
rely on the status of a subset of arcs and shows how the result-
ing local conditionality enables one again to achieve a variance
reduction. This approach is originally due to Kumamoto, Tanaka
and Inoue (1977), but the presentation here is considerably dif-
ferent in organization and more comprehensive in character. We
refer to the resulting bounds as the KTI bounds.

Let {¢1(x)} and {¢o(x)} denote binary functions on
{0,1} suech that

p1(x) s ¢(x) s ¢o(x). (17

Then for

St
cheodnd.
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g, = L ¢, (x) P(x) i=1,2
xeX
one has
By s g8 S 82.
Observe that
t1(x)e(x) = 1 if ¢y(x) = 1
=0 if ¢1(x) =0
and
¢2(x)e(x) = 1 it e(x) = 1
=0 if ¢(x) =0
so that fﬁ
d1(x)e(x) = ¢$9(x) ]
and —
1
po(x)e(x) = ¢(x). o]
]
Let o~
R |
@2(x)Po1(x) —
Q(x) = P(x) xeX (18) h
82‘81 -, .d
and suppose one samples x “rom {Q(x)}. Then :
8"81 -‘?
I ¢(x)Q(x) = . "
xeX 8,18, 0
which suggests that one take B = gy and A = g». Then var y(x) ?fﬁ
= (82sg)(grng1)<g(12g). m
Two remaining issues concern the selection of {¢1(x)} and '5
{¢2(x)} and the method of sampling from {Q(x)}] 1in (18). For :3
1
-
T
R
a
|
............................ .
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T = {t}, Kumamoto, Tanaka and Inoue suggest that one can deter-
mine a lower bound {¢y(x)} based on minimal s-t paths and an
upper bound {¢2(x)} based on minimal s-t cutsets. In particular,
let Py,...,P; denote I minimal s~t paths and C4,...,Cj, J minimal
s-t cutsets for the network G = (V,E). Then (17) holds for a

coherent system if one defines the bounds as

¢1(x) =1 - 7 (1 -7 xi) (19a)
J=1 ieP,
J
and
0,(x) = 1 =% [V -1 (1-x)]. (19b)
J=1 ieC,

J
Observe that (19a) and (19b) act as controls on the values that

the structure function {¢(x)} can assume.

To implement this approach, one needs to determine
Ptyy...,Py and Cy4,...,Cjy, compute g; and g, and devise a
sampling plan for x. Kumamoto, Tanaka and Inoue address only

the sampling issue. Let

I J
Q@ = (y Pul ¢y C.)
j=1 J j=1 J

so that sampling xj3 for 1eE-Q 1involves a Bernoulli trial. Sam-
pling arcs in 9 takes more care. Kumamoto, Tanaka and Inoue sug-
gest sampling these arcs sequentially. Define two disjoint are
sets Q¢ and Qp such that 9 = Q9 + 0, and de“ine

1

¢1(n1.92) =1 - I (-1 x, I pi)

i
J=1 lchuﬂ1 1€PJu92
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and
J
. (n.,0,) = 1n [t- 1 (1-x,) 1 (1=p.)].
21 2 i . i
J" 1€CJUQ1 IECJUQZ
Then
[o,(0.0,-{rD)-0,(B,a,-{rDIp,
pr(x_ = 1) = ~ req
r 82 81 2
and (20)

[¢2(n1,92-{r})-¢1(91.92-{r})1pr
pr(xr = 1 | X 1691) = .
¢2(n1,nz) - ¢1(n1,92)

|24 > 0, reas.

One sees that the evaluation of ¢5(+,*) and ¢(y(+,+) can take

d I
o( § FJ|) time and 0( } le) time, respectively, so that for
j=1 g1
: Jd I
all arcs in @ these computations take 0C( o ( } hjl ) PJ|))
J= J=1

time.

Without any further specification, the computation of g;j

1 J
1Py 1k
j=1 =1
and g, takes 0(2 ) and 0(2 ) time, respec-

tively, and, in fact, the time required to determine I paths
and J cutsets remains in question.

To reduce sampling time when the determination of
Py,e..,P1s CryeesyCy, g1 and g, are computationally feasible

we suggest the following more efficient method. Observe that

....... e T L e T T N T e s
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Q(x) = Q(y,z) = Q1(y)Qo(2)
where
y = {x3, 1ieal, z = {x5, 1ieE-n},
o) ¢2(y)-¢1(y) fx ¢ \ :
Q. (y) = I x (2p.-1)+1-p
! g8,m 8, teq o 1 1
and
QZ(Z)- H tx1(2p1-1)"’1-p1].

ieE-Q

Now one can compute the

n = 3 [o,(y) = ¢, (¥)] (21)
yeY

entries for {01(y)} in 0(2 |Q|) time. Provided this is computation-
ally feasible, one can then use these entries to compute tables for
the cutpoint method of Fishman and Moore (1984), also in O(ZIﬂ )

time, prior to experimentation. Lastly, one needs to create a 1-1
mapping from the n outcomes to their corresponding stored vectors y
= (x5, ien). Then on each replication sampling from this {Q1(y)}
occurs in 0( |a| ) time.

As the size of the network grows the effectiveness of this meth-
od of variance reduction can only be maintained if @ grows with E.
Therefore, there comes a point at which the tabling method is no
longer feasible; nor are the determination of P4y,...,P;, Cy,...,Cy,
g1 and g, computationally feasible without additional ~estrie-

tions. To solve this problem we propose that the paths P,,...,P; Dbe

I . .
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chosen edge-disjoint and the cutsets C4,...,Cj; be chosen edge-dis- _'}
Joint. This offers immediate advantages. Alj
First, it is clear that I § [|, C being the s-t cutset of mini- %
ié mal cardinality. In fact, one can achieve I = F| and determine iﬁi
Pys...,P; in 0O(I- |8 ) time using a network flow algorithm with unit
' capacities, as described in Wagner (1975, p. 954). Second, Js M 1
t] where M denotes the s<t path of minimal cardinality. Here one can ;
; determine the J = M| disjoint cutsets in O( |[§ ) time by beginning ‘
§ at node s and appropriately labeling arcs. Third, edge-disjointness E
X .

J
E} FJ,) 1

I
o implies that g,and g, are computadble in 0( ) IPJ ) and 0¢(

J=1 J

|
v
PO

times respectively.

Fourth, one can sample all ares in E in O0( J§ ) time.

R
'
al

F{_ Procedure Q describes such an algorithm, In parvicular, it uses
tz' the quantities: .
' ‘g = O —
3 . _‘_.4
- A, = 1 p 3= 1, .01
L J i 9
ieP MO
[ J
L
,. wg =0 ]
v wj = M (1-p) I 1,0, ]
- ieC A
'. Y
‘ I .j
A= 1 ~ n (1")\J) -:\
J=1 ]
.j‘
._'j
A
» 1

Do .
(. .
e
P A
[ v BRI
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ﬁ{ as a function of {pi' ien} and as a function of the size of the network
; G. For convenience of exposition we assume [Py] s ...s| Pyl and
s'.’-
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J
w =1 (1~w,)
j=1 3
Ji =3 if 1ePj J=1,...,1
I
= 0 if i¢ 1 P,
k=1
and
ki = J i 1eCy Jo=1,...,4d
J
=0 if itZCk
k=1

Here {j;} and {kj} are pointers identifying the path and cut-

set, respectively, to which arc i belongs.

y, Bounds on Bounds

1° one uises a table or Procedure Q then an (e,8) absolute
criterion has= O(max( M , |§ )[8(8)(A=B)/2e]?) worst case time from
(7a) and (e,6) relative criteria have O(max( |V |, |§ J[8(8)(A-B)/2¢12/AB)
and O(max( M , |8 )[8(8)(A-B)/2e12/(1-A)(1-B)) worst case times from
(7b) and 7¢) respectively. While (19) leads to a variance reduction,

it is important to understand exactly how these worst case times behave
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Purpose:

Input:

Qutput:
Method:
I.

II.

III.

MBS i anmiy D dara R T———w ” PO " ——

—2[_‘_

Procedure Q

To sample the status of each arc i in E.
E,{py, 1€E}, I, J, [rj; 3=0,1,...,1},
fwy: 3=0,1, ...} A, e, fdiakys ieq}.
{xi, isE}.
Initialization: A = w and p = A.
Sample arcs in E-Q

If pj = p for all ieE-Q, then use Procedure BIN to
determine status of these arcs.
Otherwise: For each arc {1 in E-Q, sample U from
U(0,1) and set xj = Lpi*UJ .
Sample arecs in @ -—
For each arc i in q do:

a. Compute the probability that arc i fails

/(1=py) ) A = (A-AJ )/(1—xj ) e
| . .

! [1-wk
i

1-w
k.l i

and q = (w-A)p /(A-p).
1

w =

b. Determine the state of arc i
Sample U from U(0,1) and set x; = | U=g+! J.

c. Update parameters for the next arc

w = w/[1—xiwk1/(1-pi)]; wki= (1-xi)wki/(1-pi);
A= 1—(1-A)[1-xixj /pi]; Aj = Aj.xi/pi;

i i i
A = w and p = 1.

End of procedure.
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£y s...s Eyl ., note that [Py 2 M, 1 s £, 4 2 E|l an

M ., and begin with Y(gk; A,B) in (7b).

i1 Boundedness with Respect to {pi, isﬂ}

Observe that for disjoint paths

I
B =g, =1-1 (1- n p;) (23
j=1  iep, °
J
and let
r = max 1 pi
12381 ieP,
J
and
N = number of paths k for which n p, = r k = 1,..

i
1ePk

Then one can write (23) in the more concise form

B = Nr + o(r) (21
where o(w) denotes a function h(w) such that iig Eéil = 0,
Now observe that for disjoint cutsets

J
A =g, = 1[i-1 (1-py)] (2!
J=1 ieC

J

and let

AT A T S UG S S
St SR T S

IO CORP IR SN
LIRS I SRR S SRS -
A bl sl a0 a ata At t e n e a
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q, = max p, =1, J
J ieC !
J
J
qQ = I g
j=1 9
and
M. = number of ., = . ieC = 1,...,d.
J Py = ay 1eCy J

Then A has the more concise representation

J
qQ I M,
j=1 7

A = + o(qg). (26)

Note that (25) and (26) hold regardless of whether or not

Pyy...,Pj are disjoint and Cy,...,Cj; are disjoint.

With regard to (7b) one has for a given network G

J
2
2 M,~-Nr/q + /q = o(r)/
(A-B) g [JE1 j Nr/q o(q)/q (r)/q] (279
AB r J '
[n MJ + 0(q)/qlIN + o(r)/r]
j=1
which is finite for all 0 € pj s 1 ieQ if and only if
qQ =r. (28)
This condition is met for P, -'{qj, =1,...,J}. For the spe-
cial case p;j = p iep only [Pqy] = J is needed.

We now turn to Y(1-gg; A,B) in (7¢) for which one has

the alternative representations

I
B =1-qi MJ + o(q)

=1
t
L
oo where
»
S S Ol T L A R L L
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M, = number of P; = 1 - on path P

9 j
and
A=1=Nr7r+ o(r)

where

~ 1

= max n (1’Di)

& 153sJ ieCj

and

fi ﬁ = number of cutsets k for which 1 (1-pi) - r k = 1,...,d.
. 1eCk

Fi Then for a given network G

I
n - Nr/q + o(r)/q - o(q)/QJ2

k4
.

(A-B)2

=R (1-8) (29)

sila

L
_J

{ ﬁj + 0(g)/qlIN + o(r)/r]
1

L ] R

J

which is finite for all pjy iefq if and only if
q =r. (30)
This condition is met for Cy = {1*EJ; J=1,...,1}. For the
case p; = p 1eq only fFq] = I is needed.
These results carry considerable practical importance for
they reveal conditions under which the time to achieve an esti-

mate of g or 1-g with specified relative error is finite for a

......
.........
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given network G regardless of the arc probabilities {pi. icE}. ) -
Moreover, the forms (27) and (29) provide valuable guidance when
choosing paths and cutsets. For example, choosing paths and cut-

J
sets to mimimize |n ﬁJ-N] is a desirable objective with regard to
J=1

J
(29), as is choosing them to mimimize ln M

J=1

J—N | with regard to (27).

4.2 Boundedness with Respect To Network Size
When one turns to the effect of network size on the complex-
ity of a Monte Carlo experiment with an (e,§) accuracy criterion,
one quickly realizes that the way in which the network grows is . R
of crucial importance. In particular, the effect on g(s,t) is a
central consideration. Since this topic deserves considerably
more space than we can afford here, we 1imit our comments to a -
special but interesting case.
By network growth we mean an increase in the number of arcs.
Recall that M and C denote the s=t path and s-t cutset of E of
mimimal cardinalities. If the sizes of M and C remain constant
as E grows, then {t is always possible to choose a set of dis-
Joint paths Py,...,P7; I 2 1 and a set of disjoint cutsets
Ciy.¢.4C3 J 2 1 such that the resulting bounds B and A are

I
functions only of the arc probabilities {pj, te } PJ} and {pi. ie } C
J=1

PR RPN S e e s e e e e . e e .
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respectively, so that the analysis in the previous section applies.
Then a Monte Carlo experiment using Procedure Q and a depth-first
search algorithm to determine connectedness meets the absolute error
criterion (7a) and the relative error criteria (7b) and (7c) in
O(max( | , |§ )) time.

A question remains as to how interesting is the set of networks

that satisfy these restrictions on M and C. If the vertex degrees o0*

G are bounded from above then the constraint on C is not unreasonable.

However, the restriction on M may be more difficult to justify.

Clearly, more remains to be said about bounds on bounds as E grows.

5. Example

An analysis of the network in Fig. 1 illustrates the benefits

and costs of the VSF and KTI bounds for s-t connectedness. The net-

work has 30 arcs, limiting the feasibility of directly calculating g.

Insert Fig. 1 about here.

The example assumes independent failures with pi = D
ieE, p = .5, .9 and .95, {s} = 1 and {t} = 20. For the VSF
bounds we have L. = M = 5 and H = | = 3. For the KTI bounds
we consider two cases. Case 1 has

2 = {1,2,3,4,9,11,18,19,27,28,29,30}

Py = {1,4,11,19,28} P, = {3,9,18,27,28}

ci = {1,2,3} c, = {28,29,30}

and case 2 has

T
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E~@ = {10,13,16,20,23,26}

Py = {3,9,18,27,28} Ps = {1,5,12,21,29]}

Py = {2,7,15,24,30} ¢y = {1,2,3}

c, = {28,29,30} Cz3 = {11,12,14,15,17,18}

cy = {4,5,6,7,8,9]} Cg = {19,21,22,24,25,27}.

Observe that for case 1 |ag| = 12 enabling us to use the tabl-
ing method for {Qqi(y)}. Although case 2 with || = 24 limits the
possibility of tabling, Py, P, and P3 are disjoint and Cy, Cp,

C3, Cy and Cg are disjoint, enabling one to use Procedure Q.

Table 1 lists the bounds 1+A and 1=B together with the

. \ et . .

Insert Table 1 about here.

bounds on sample size that (10) induces for 6§ = .05 and € = ,05.
Observe that these worst case VSF bounds are of little value com-
pared to the KTI bounds. Also, note that the advantage of case 2
relative to case 1, with regard to a bound on K, increases with p.
One measure of the effect of a variance reducing technique

is the variance ratio g(1-g)/K var EK' A ratio greater than

unity indicates that the technique has the desired effect. A time

ratio T91/Tp, is also used where Ty denotes the mean time to

- collect an observation using a crude Monte Carlo sampling plan

b and T, denotes the mean time to collect an observation using the
: proposed method. Then [g(1-g)/K var EK] X Ty/To> gives the
relative time required to achieve a given variance with crude

b Monte Carlo sampling as compared to the time required to achieve

this same variance with the proposed method.
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: 1

Table 2 shows these ratios for the VSF and KTI bounds and - 1

4

P = .5, .9, .95 for K = 216 o 262144 independent replications

using Procedure BIN for the VSF case, a table of {Q1(Y)} together

with Procedure BIN for KT case 1 and Procedure Q for KTI case 2. Y

Insert Table 2 about here.

The results indicate that both the VSF and KTI bounds have advan- -

tages, but the KTI bounds c¢learly dominate. Moreover, observe j

that Procedure Q consumes considerably more time than tabling .iF

does. Also note the a priori minimal variance ratio 4‘f

g'(1-g')/(a-g')(g'~B) in Table 2. T

-;;;

-9

6. Assessing Credibility B

.

Since the worst case bounds of Section 2 often lead to con- -a

siderably larger sample sizes K than are required in specific T‘i

analyses, one is interested {n ways of assessing the extent to : E

which a specific criterion is being met as the sampling experi- E

ment progresses. Although a statistical literature does exist ]

; for sequential sampling to achieve a fixed width confidence inter- B

éf val, (e.g. Chow and Robbins 1965) the fact that it relies on asym-

?7 ptotic behavior (e + 0) limits its appeal. As an alternative we ;fxq

- e
E: describe how one can assess the credibility of an absolute or ;

% relative error criterion as the experiment proceeds. iﬁg

! | Recall that g = (A-B)uy + B, Therefore, criteria (1),(2) and ~~JT

é; (3) imply u e[u*.u'] where for (1) ¢}§

s SR

- s

» 1
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= max(0,2 - —_)
Ha 'K~ A-B 4
* in(1 =) -
- + o
u qa1ln IK A_B [} '-:.:1
Y
for (2) -‘j
{
1 S eB 9
Wy = max[O.m(K A_—E)] :
* 1 S €B Y
poo= min[1'1+e(K + ﬁ)] !
4
and for (3) ]
1 /8 €(1-B) :

we = max{o, sl - S0
* 1 .8, e(1-B) gl
W= min{t, =g ¢ =11 _<
Since & has the binomial distribution one has ;,7
N
priuvélu,,u")} = 1 - Fg(K,u,) + Fg(K,u*), (31) —
- q
F being the binomial distribution function. ]
Table 3 shows this probability for a relative error criteri- Ef;
on € = ,05 for 1-g for case 2 of the KTI bounds. By choosing —
-
powers of 2 for K we insure that at each successive evaluation .
half the data provides new information. Observe that one may be 5
Insert Table 3 about here. 4
confident in terminating the sampling experiment at K = 1024 for f%
p = .5 and at K = 32768 for p = .9 and .95. IMSL (1982) and SAS j
(1982) provide routines for evaluating the binomial distribution. .
o
1
e
A S e e Y e S e
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7. Confidence Intervals

While the credibility analysis of Section 6 provides consid- _fiﬂ

erable guidance, one would also like to evaluate the precision of

Bk more explicitly at the end of an experiment. Confidence A
intervals provide one way of making this assessment. As the next

two subsections show, different methods exist for constructing

these intervals. Section 7.1 describes an exact method that re-
quires some care with regard to computation. Section 7.2 de-
scribes a relatively simple method whose results rely on either

general bounds or asymptotic limits,.

i

7.1 Exact Confidence Intervals
Suppose that exactly S successes occur in K independent trials. :7%
Then there exist 2-tuples (u1, a1.) and (“2’ u2) with 0 < My < M, < 1 ﬁfﬁi
and 0 < a, < a, < 1 such that f;i
1 - FS_1(K.u1) - a, -
 ',‘<
and :
FS(K,uZ) - 1 = a,-. . j
Let
0Ca,) = Cugs Fg (Kyuy) =1 = a,) o]
and (32)

G(az) - (u2= FS(K.uZ) - 1 - °2)'

4
.Y
B
4

.1

1
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Then [0(01), 9(a2)] is a confidence interval for y at confidence

level a = ay, = ay. Since there are many ay < ay that satisfy a =
a, - 01, one way to proceed is to choose a, and a, to minimize
O(uz) - 9(u1), subject to 0 < a, < @, < 1 and a = a, " a,, thus

giving the shortest interval at level a. An alternative way to
proceed is to choose @, = (1-a)/2 and a, = (1+a)/2 so that each
tail has equal probability.

To facilitate the determination of ©(a,) and O(az) in (32)
observe that (Abramowitz and Stegun 1964, p. 9u5)

C] ‘L _
1= Fy_y(nye) = [ (D V=) aw. (33)
0

Therefore o(a1) calls for an evaluation of the inverse Beta
distribution with parameters S and K »~ S + 1 and e(az), for an
evaluation of the inverse Beta distribution with parameters S + 1
and K » &, Procedure INTERVAL describes how to compute the short-
est confidence interval at level a. Although standard computing
packages exist to perform the inversions for e(ai) i = 1,2 in step
Ilc, experience with such packages in IMSL(1982) and SAS(1982),
indicates that a large K severely limits their abilities to pro-
duce numerjical results when 8<<K. It is precisely in such cases
that one may be willing to settle for bounding or approximating

results.
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Procedure INTERVAL

Purpose: To compute a confidence interval for g at level a.

Input: Sample size K, number of successes S, bounds A and B, a
confidence level a and grid size N. 51
Qutput: a confidence interval [g*,g*] of shortest f
length.
Method: ) _A
I. Initialization
a. L = 0 and U = 1. :
II. Search for shortest interval ; j
|

For each i = 1',...,N-1 do:
a. a, = (1-a)(1/N). B
b. a, = a + a,. S
e. For j = 1,2 solve (31) for e(aj)
d. If U - L > 8(a,) = 8(a,), then set L = 8(a,) and DR
U = e(u1). o
wrsuind
I1II. Compute confidence interval "
a. g, = (A-B)L + B.
*

b. g = (A-B)U + B. ‘ i

End of procedure.
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7.2 1Intervals Based on Probability Inequalities and Limits
As Section 1 indicates, inequalities and approximations
exist that can be used to compute worst case upper bounds for K
for specified § and €. These inequalities also are of value when
computing confidence intervals. Consider the probability state-

ment

Byl
pr | —> S g(1-a)} 2@ 0< a < 1. (34)
[(A-g)(g-B)/K]

.

By rearranging terms in the argument of pr{-] in (24), one can

assert that with probability of at least aq the interval

(A-B)S+KB+(A+B)g°>/2+8(A-B)[8°/4+3(K-8)/K]" 2 (35)
K + 82
covers g, where B8 £ g(1-a). As in the case of worst case bounds

one determines B(1-a) for a specified confidence level a from
(11) for Chebyshev's inequality and from (12) for the normal
approximation., Table 4 presents the bounding and approximating

.95 confidence intervals for 1-g for the network in Fig. 1.

Insert Table 4 about here.
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h 8. Essential Steps for Implementation

i. The results of this paper show that an effective Monte Carlo
procedure, based on bounds B and A, exists for estimating g(s,T)
in worst case time O(max( M , |§ ) - D) time where D = (A-B)2 for
a given (e,8) absolute error criterion and D =

(A-B)2/min[AB,(1-A)(1=B)] for a given (e,é6) relative error criter-

b

b

l

|

4

!

t: ion. Moreover, the number of replications required to achieve

: these worst case bounds can be computed prior to experimentation
b

< and used as a guide. O0Of the two methods of deriving bounds de-
h

ﬁ scribed here, the example of Section 4 shows that the KTI bounds
are most beneficial, especially for p close to unity. Therefore,
we recommend that the KTI bounds be used in practice together

ﬁi with the following steps:

Ei 1. Determine a set of edge~-disjoint s-t paths P1,...,P1.

2. Determine a set of edge-disjoint s-t cutsets C4y,...,C;.

I
Ei 3. Compute B from Py,...,Py in 0( ]} le) time and A from
- J=1
o J
g CivevesCyin 0 521Cj|) time.
® 4, Choose a (e£,8) absolute or relative error criterion
: ((1),(2) or (3)) and assign values to € and &. Then
l; determine the bound X* on K accordingly from (8), (9) or
° (10). Use this value for guidance.
I J
5. If k=] 7% Pj)u( ) CJ)I is small enough, then compute a
=1 J=1
D table of the probability mass function {Q1(y)} in
).
e T N e o T T ol
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0(2 IQI) time, -

6. For the sampling experiment use Procedure BOUNDS.

a. Table approach:

Sample arcs in E-Q using Procedure B if the p; are
distinct and using Procedure BIN i they are equal.
Sample ares in @ from a table of {Qqi(y)}.

b. Sequential approach: Use Procedure Q.

Steps a and b each take 0( |§ ) time.

Q

Check for connectedness using a depth-cirst search

in O(max( |y , [§)) time.

7. If the sampling experiment is to be performed in blocks
of K1, Ky + Kp, Ky + Kp + K3, replications, etc., then
after each block compute the credibility probability
(31). Suggested increments are K; = Kq2i=1 for i =
1,2,...

8. After completion o the experiment compute a confidence

interval for g, as in Section 6.
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Table 1
Bounds for Relative Accuracy Criterion (10)
6 = .05 and € = .05

Bounds on K

1-B 1-A Chebyshev Normal
p=.50
VSF .1000x10" .2974x10™ 4 67x106 13x106
KTI 1 .9395 L2344 4515 867
2 .9092 .2697 3335 640
p=.90
VSF .5886 .1828x10™21 64x1023 12x1023
KTI 1 .2064 .1999x1072 202522 38898
2 .6867x10" '  ,2002x1072 64659 12419
p=.95
VSF .1878 .3352x10°29 11x103" 21x1030
KTI 1 .8269x10™1  .3031x10™3 541 635 101671
2 .1158x10°'  .2500x1073 88683 17033
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. Table 2

F': Variance Reductions '

: K = 262144

R T 3 '
25 g(1-g) g'(1-g") 1 g(1-g)

1-g - — T = X

e KvargK (A-g')(g'-B) 2 KvargK

o p=.50

v VSF .T104 1.00 1.00 .9l .94 )

K KTI 1 | .7094 1.89 1.88 1.0k 1.97

! KTI 2 L7105 2.35 2.31 .24 .56

3 pz.go

: VSF .2933x1072 1.70 1.70 .91 1.55

» KTI 1 .2862x1072 16.67 5.83 1.00 16.67

m KTI 2 .2867x1072 50.22 20.93 .26 13.06

:7 p=.95

; VSF .2938x10"3 5.33 5.32 .82 4,37

: KTI 1 .2887x10"3 95,04 13.63 .97 92.19

‘b KTI 2 .2940x10"3 592,23 118.46 .23 135.49 .

: t+ g is estimated by EK in the quantity g(1-g) and var EK is

estimated by V(EK).
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Table 3
Credibility Results
pril g8 | > .05(1-8))
- KTI Bounds, Case 2
,-_‘f K p=.5 p=.9 p=.95
Fo
. 2 | .869 1.000 1.000 S
4y 1 .755 1.000 1.000 o
f 8 | .615 1.000 1.000
' 16 | .6T1 1.000 1.000
: 32 | .504 .927 1.000
P 64 | .343 .892 1.000
128 | .197 . 841 1.000
256 | .657x10"! L7178 1.000 .
572 | .821x1072 .664 .531
H 1024 | .242x10™3 .561 .559
2045 | .281x1076 .398 407
4096 | .371x10™12 .223 .219
8192 | .217x10723 .802x10™" .848x107" s
16384 | .235x10745 .134x107! .126x1071 -
32768 | .000 .559x10™3 .248x10™3
65536 [ .000 .858x1076 .123x1076 -
131072 | .000 .160x10" 1! .196x10715 -
262144 | .000 .336x10722 11410729 o
o
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Table 4

.95 Confidence Intervals for 1-g

Chebyshev Normal
KTI 1
p=.50
lower .7065 . 7087
upper .7123 .T107
width .5775x1072 .2531x1072
p=.90
lower .2754x1072 .2813x1072
upper .2986x10™2 .2914x1072
width .2321x1073 .1015x10"3
p=.95
lower .2759x1073 .2824x10"3
upper .3077x10™3 .2961x10™3
width .3181x1074 .1372x107 4
KTI 2
p=. 50
lower .7079 . 7094
upper L7131 LTINT
width .5169x10"2 .2265x1072
p=.90
lower .280Ux1072 .2839x10”2
upper .2935x1072 .2896x1072
width .1319x10™3 .6054x10™4
p=.95
lower .2883x10™3 .2914x10"3
upper .3066x10"3 .2968x10™3
width .1234x10™4 .5396x1075
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Network

Fig.l
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